Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Vaccine ; 41(37): 5424-5434, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37479609

RESUMO

BACKGROUND: Immunocompromised (IC) persons are at increased risk for severe COVID-19 outcomes and are less protected by 1-2 COVID-19 vaccine doses than are immunocompetent (non-IC) persons. We compared vaccine effectiveness (VE) against medically attended COVID-19 of 2-3 mRNA and 1-2 viral-vector vaccine doses between IC and non-IC adults. METHODS: Using a test-negative design among eight VISION Network sites, VE against laboratory-confirmed COVID-19-associated emergency department (ED) or urgent care (UC) events and hospitalizations from 26 August-25 December 2021 was estimated separately among IC and non-IC adults and among specific IC condition subgroups. Vaccination status was defined using number and timing of doses. VE for each status (versus unvaccinated) was adjusted for age, geography, time, prior positive test result, and local SARS-CoV-2 circulation. RESULTS: We analyzed 8,848 ED/UC events and 18,843 hospitalizations among IC patients and 200,071 ED/UC events and 70,882 hospitalizations among non-IC patients. Among IC patients, 3-dose mRNA VE against ED/UC (73% [95% CI: 64-80]) and hospitalization (81% [95% CI: 76-86]) was lower than that among non-IC patients (ED/UC: 94% [95% CI: 93-94]; hospitalization: 96% [95% CI: 95-97]). Similar patterns were observed for viral-vector vaccines. Transplant recipients had lower VE than other IC subgroups. CONCLUSIONS: During B.1.617.2 (Delta) variant predominance, IC adults received moderate protection against COVID-19-associated medical events from three mRNA doses, or one viral-vector dose plus a second dose of any product. However, protection was lower in IC versus non-IC patients, especially among transplant recipients, underscoring the need for additional protection among IC adults.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Adulto , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Serviço Hospitalar de Emergência , Hospitalização , RNA Mensageiro
2.
Influenza Other Respir Viruses ; 17(1): e13089, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625234

RESUMO

BACKGROUND: The COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) required a sampling methodology that allowed for production of timely population-based clinical estimates to inform the ongoing US COVID-19 pandemic response. METHODS: We developed a flexible sampling approach that considered reporting delays, differential hospitalized case burden across surveillance sites, and changing geographic and demographic trends over time. We incorporated weighting methods to adjust for the probability of selection and non-response, and to calibrate the sampled case distribution to the population distribution on demographics. We additionally developed procedures for variance estimation. RESULTS: Between March 2020 and June 2021, 19,293 (10.4%) of all adult hospitalized cases were sampled for chart abstraction. Variance estimates for select variables of interest were within desired ranges. CONCLUSIONS: COVID-NET's sampling methodology allowed for reporting of robust and timely, population-based data on the clinical epidemiology of COVID-19-associated hospitalizations and evolving trends over time, while attempting to reduce data collection burden on surveillance sites. Such methods may provide a general framework for other surveillance systems needing to quickly and efficiently collect and disseminate data for public health action.


Assuntos
COVID-19 , Adulto , Humanos , Estados Unidos/epidemiologia , COVID-19/epidemiologia , Pandemias , Vigilância da População/métodos , Saúde Pública , Hospitalização
3.
J Infect Dis ; 227(8): 961-969, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36415904

RESUMO

BACKGROUND: We assessed coronavirus disease 2019 (COVID-19) vaccination impact on illness severity among adults hospitalized with COVID-19, August 2021-March 2022. METHODS: We evaluated differences in intensive care unit (ICU) admission, in-hospital death, and length of stay among vaccinated (2 or 3 mRNA vaccine doses) versus unvaccinated patients aged ≥18 years hospitalized for ≥24 hours with COVID-19-like illness and positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) molecular testing. We calculated odds ratios (ORs) for ICU admission and death and subdistribution hazard ratios (SHR) for time to hospital discharge adjusted for age, geographic region, calendar time, and local virus circulation. RESULTS: We included 27 149 SARS-CoV-2-positive hospitalizations. During both Delta- and Omicron-predominant periods, protection against ICU admission was strongest among 3-dose vaccinees compared with unvaccinated patients (Delta OR, 0.52 [95% CI, .28-.96]; Omicron OR, 0.69 [95% CI, .54-.87]). During both periods, risk of in-hospital death was lower among vaccinated compared with unvaccinated patients but ORs overlapped across vaccination strata. We observed SHR >1 across all vaccination strata in both periods indicating faster discharge for vaccinated patients. CONCLUSIONS: COVID-19 vaccination was associated with lower rates of ICU admission and in-hospital death in both Delta and Omicron periods compared with being unvaccinated.


Assuntos
COVID-19 , Humanos , Adulto , Adolescente , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Mortalidade Hospitalar , Vacinas de mRNA
4.
JMIR Form Res ; 7: e39231, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36383633

RESUMO

BACKGROUND: Electronic health record (EHR) data provide a unique opportunity to study the epidemiology of COVID-19, clinical outcomes of the infection, comparative effectiveness of therapies, and vaccine effectiveness but require a well-defined computable phenotype of COVID-19-like illness (CLI). OBJECTIVE: The objective of this study was to evaluate the performance of pathogen-specific and other acute respiratory illness (ARI) International Statistical Classification of Diseases-9 and -10 codes in identifying COVID-19 cases in emergency department (ED) or urgent care (UC) and inpatient settings. METHODS: We conducted a retrospective observational cohort study using EHR, claims, and laboratory information system data of ED or UC and inpatient encounters from 4 health systems in the United States. Patients who were aged ≥18 years, had an ED or UC or inpatient encounter for an ARI, and underwent a SARS-CoV-2 polymerase chain reaction test between March 1, 2020, and March 31, 2021, were included. We evaluated various CLI definitions using combinations of International Statistical Classification of Diseases-10 codes as follows: COVID-19-specific codes; CLI definition used in VISION network studies; ARI signs, symptoms, and diagnosis codes only; signs and symptoms of ARI only; and random forest model definitions. We evaluated the sensitivity, specificity, positive predictive value, and negative predictive value of each CLI definition using a positive SARS-CoV-2 polymerase chain reaction test as the reference standard. We evaluated the performance of each CLI definition for distinct hospitalization and ED or UC cohorts. RESULTS: Among 90,952 hospitalizations and 137,067 ED or UC visits, 5627 (6.19%) and 9866 (7.20%) were positive for SARS-CoV-2, respectively. COVID-19-specific codes had high sensitivity (91.6%) and specificity (99.6%) in identifying patients with SARS-CoV-2 positivity among hospitalized patients. The VISION CLI definition maintained high sensitivity (95.8%) but lowered specificity (45.5%). By contrast, signs and symptoms of ARI had low sensitivity and positive predictive value (28.9% and 11.8%, respectively) but higher specificity and negative predictive value (85.3% and 94.7%, respectively). ARI diagnoses, signs, and symptoms alone had low predictive performance. All CLI definitions had lower sensitivity for ED or UC encounters. Random forest approaches identified distinct CLI definitions with high performance for hospital encounters and moderate performance for ED or UC encounters. CONCLUSIONS: COVID-19-specific codes have high sensitivity and specificity in identifying adults with positive SARS-CoV-2 test results. Separate combinations of COVID-19-specific codes and ARI codes enhance the utility of CLI definitions in studies using EHR data in hospital and ED or UC settings.

5.
MMWR Morb Mortal Wkly Rep ; 71(13): 495-502, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35358170

RESUMO

CDC recommends that all persons aged ≥18 years receive a single COVID-19 vaccine booster dose ≥2 months after receipt of an Ad.26.COV2.S (Janssen [Johnson & Johnson]) adenovirus vector-based primary series vaccine; a heterologous COVID-19 mRNA vaccine is preferred over a homologous (matching) Janssen vaccine for booster vaccination. This recommendation was made in light of the risks for rare but serious adverse events following receipt of a Janssen vaccine, including thrombosis with thrombocytopenia syndrome and Guillain-Barré syndrome† (1), and clinical trial data indicating similar or higher neutralizing antibody response following heterologous boosting compared with homologous boosting (2). Data on real-world vaccine effectiveness (VE) of different booster strategies following a primary Janssen vaccine dose are limited, particularly during the period of Omicron variant predominance. The VISION Network§ determined real-world VE of 1 Janssen vaccine dose and 2 alternative booster dose strategies: 1) a homologous booster (i.e., 2 Janssen doses) and 2) a heterologous mRNA booster (i.e., 1 Janssen dose/1 mRNA dose). In addition, VE of these booster strategies was compared with VE of a homologous booster following mRNA primary series vaccination (i.e., 3 mRNA doses). The study examined 80,287 emergency department/urgent care (ED/UC) visits¶ and 25,244 hospitalizations across 10 states during December 16, 2021-March 7, 2022, when Omicron was the predominant circulating variant.** VE against laboratory-confirmed COVID-19-associated ED/UC encounters was 24% after 1 Janssen dose, 54% after 2 Janssen doses, 79% after 1 Janssen/1 mRNA dose, and 83% after 3 mRNA doses. VE for the same vaccination strategies against laboratory-confirmed COVID-19-associated hospitalizations were 31%, 67%, 78%, and 90%, respectively. All booster strategies provided higher protection than a single Janssen dose against ED/UC visits and hospitalizations during Omicron variant predominance. Vaccination with 1 Janssen/1 mRNA dose provided higher protection than did 2 Janssen doses against COVID-19-associated ED/UC visits and was comparable to protection provided by 3 mRNA doses during the first 120 days after a booster dose. However, 3 mRNA doses provided higher protection against COVID-19-associated hospitalizations than did other booster strategies during the same time interval since booster dose. All adults who have received mRNA vaccines for their COVID-19 primary series vaccination should receive an mRNA booster dose when eligible. Adults who received a primary Janssen vaccine dose should preferentially receive a heterologous mRNA vaccine booster dose ≥2 months later, or a homologous Janssen vaccine booster dose if mRNA vaccine is contraindicated or unavailable. Further investigation of the durability of protection afforded by different booster strategies is warranted.


Assuntos
COVID-19 , Vacinas contra Influenza , Adolescente , Adulto , Assistência Ambulatorial , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Serviço Hospitalar de Emergência , Hospitalização , Humanos , Imunização Secundária , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
6.
MMWR Morb Mortal Wkly Rep ; 71(9): 352-358, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35239634

RESUMO

The efficacy of the BNT162b2 (Pfizer-BioNTech) vaccine against laboratory-confirmed COVID-19 exceeded 90% in clinical trials that included children and adolescents aged 5-11, 12-15, and 16-17 years (1-3). Limited real-world data on 2-dose mRNA vaccine effectiveness (VE) in persons aged 12-17 years (referred to as adolescents in this report) have also indicated high levels of protection against SARS-CoV-2 (the virus that causes COVID-19) infection and COVID-19-associated hospitalization (4-6); however, data on VE against the SARS-CoV-2 B.1.1.529 (Omicron) variant and duration of protection are limited. Pfizer-BioNTech VE data are not available for children aged 5-11 years. In partnership with CDC, the VISION Network* examined 39,217 emergency department (ED) and urgent care (UC) encounters and 1,699 hospitalizations† among persons aged 5-17 years with COVID-19-like illness across 10 states during April 9, 2021-January 29, 2022,§ to estimate VE using a case-control test-negative design. Among children aged 5-11 years, VE against laboratory-confirmed COVID-19-associated ED and UC encounters 14-67 days after dose 2 (the longest interval after dose 2 in this age group) was 46%. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 83% and 76%, respectively; VE ≥150 days after dose 2 was 38% and 46%, respectively. Among adolescents aged 16-17 years, VE increased to 86% ≥7 days after dose 3 (booster dose). VE against COVID-19-associated ED and UC encounters was substantially lower during the Omicron predominant period than the B.1.617.2 (Delta) predominant period among adolescents aged 12-17 years, with no significant protection ≥150 days after dose 2 during Omicron predominance. However, in adolescents aged 16-17 years, VE during the Omicron predominant period increased to 81% ≥7 days after a third booster dose. During the full study period, including pre-Delta, Delta, and Omicron predominant periods, VE against laboratory-confirmed COVID-19-associated hospitalization among children aged 5-11 years was 74% 14-67 days after dose 2, with wide CIs that included zero. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 92% and 94%, respectively; VE ≥150 days after dose 2 was 73% and 88%, respectively. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations, including a booster dose for those aged 12-17 years.


Assuntos
Vacina BNT162/administração & dosagem , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Eficácia de Vacinas/estatística & dados numéricos , Adolescente , Assistência Ambulatorial/estatística & dados numéricos , Criança , Pré-Escolar , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Imunização Secundária , Masculino , Estados Unidos
7.
MMWR Morb Mortal Wkly Rep ; 71(7): 255-263, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35176007

RESUMO

CDC recommends that all persons aged ≥12 years receive a booster dose of COVID-19 mRNA vaccine ≥5 months after completion of a primary mRNA vaccination series and that immunocompromised persons receive a third primary dose.* Waning of vaccine protection after 2 doses of mRNA vaccine has been observed during the period of the SARS-CoV-2 B.1.617.2 (Delta) variant predominance† (1-5), but little is known about durability of protection after 3 doses during periods of Delta or SARS-CoV-2 B.1.1.529 (Omicron) variant predominance. A test-negative case-control study design using data from eight VISION Network sites§ examined vaccine effectiveness (VE) against COVID-19 emergency department/urgent care (ED/UC) visits and hospitalizations among U.S. adults aged ≥18 years at various time points after receipt of a second or third vaccine dose during two periods: Delta variant predominance and Omicron variant predominance (i.e., periods when each variant accounted for ≥50% of sequenced isolates).¶ Persons categorized as having received 3 doses included those who received a third dose in a primary series or a booster dose after a 2 dose primary series (including the reduced-dosage Moderna booster). The VISION Network analyzed 241,204 ED/UC encounters** and 93,408 hospitalizations across 10 states during August 26, 2021-January 22, 2022. VE after receipt of both 2 and 3 doses was lower during the Omicron-predominant than during the Delta-predominant period at all time points evaluated. During both periods, VE after receipt of a third dose was higher than that after a second dose; however, VE waned with increasing time since vaccination. During the Omicron period, VE against ED/UC visits was 87% during the first 2 months after a third dose and decreased to 66% among those vaccinated 4-5 months earlier; VE against hospitalizations was 91% during the first 2 months following a third dose and decreased to 78% ≥4 months after a third dose. For both Delta- and Omicron-predominant periods, VE was generally higher for protection against hospitalizations than against ED/UC visits. All eligible persons should remain up to date with recommended COVID-19 vaccinations to best protect against COVID-19-associated hospitalizations and ED/UC visits.


Assuntos
Assistência Ambulatorial/estatística & dados numéricos , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Eficácia de Vacinas , Vacinas de mRNA/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Serviço Hospitalar de Emergência , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Estados Unidos , Adulto Jovem
8.
Open Forum Infect Dis ; 9(2): ofab641, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35106318

RESUMO

BACKGROUND: An elevated risk of tuberculosis (TB) disease in persons who have received tumor necrosis factor alpha inhibitor medications (TNF-α inhibitors) has been reported for nearly two decades, but clinical diagnostic features and outcomes of TB in this population remain poorly described. METHODS: We analyzed national surveillance data for TB cases among persons aged 15 years and older reported in the United States during 2010-2017 and associated mortality data reported through 2019 to describe the clinical characteristics of those receiving TNF-α inhibitors. RESULTS: Of 70 129 TB cases analyzed, 504 (0.7%) of the patients had TNF-α inhibitor use reported at TB diagnosis. Patients with TNF-α inhibitor use at TB diagnosis were more likely than TB patients not receiving TNF-α inhibitors to have TB diagnosed in extrapulmonary sites in conjunction with pulmonary sites (28.8% vs 10.0%, P < .001). Patients receiving TNF-α inhibitors were less likely to have acid-fast bacilli noted on sputum smear microscopy (25.6% vs 39.1%, P = .04), and more likely to have drug-resistant disease (13.5% vs 10.0%, P < .001). TB-attributed deaths did not significantly differ between patients receiving and not receiving TNF-α inhibitors (adjusted odds ratio, 1.46 [95% confidence interval, .95-2.26]). CONCLUSIONS: Clinicians evaluating TNF-α inhibitor-treated patients should have a high index of suspicion for TB and be aware that extrapulmonary or sputum smear-negative TB disease is more common in these patients. No significantly diminished survival of TB patients treated with TNF-α inhibitor therapy before TB diagnosis was noted.

9.
MMWR Morb Mortal Wkly Rep ; 71(4): 139-145, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35085224

RESUMO

Estimates of COVID-19 mRNA vaccine effectiveness (VE) have declined in recent months (1,2) because of waning vaccine induced immunity over time,* possible increased immune evasion by SARS-CoV-2 variants (3), or a combination of these and other factors. CDC recommends that all persons aged ≥12 years receive a third dose (booster) of an mRNA vaccine ≥5 months after receipt of the second mRNA vaccine dose and that immunocompromised individuals receive a third primary dose.† A third dose of BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine increases neutralizing antibody levels (4), and three recent studies from Israel have shown improved effectiveness of a third dose in preventing COVID-19 associated with infections with the SARS-CoV-2 B.1.617.2 (Delta) variant (5-7). Yet, data are limited on the real-world effectiveness of third doses of COVID-19 mRNA vaccine in the United States, especially since the SARS-CoV-2 B.1.1.529 (Omicron) variant became predominant in mid-December 2021. The VISION Network§ examined VE by analyzing 222,772 encounters from 383 emergency departments (EDs) and urgent care (UC) clinics and 87,904 hospitalizations from 259 hospitals among adults aged ≥18 years across 10 states from August 26, 2021¶ to January 5, 2022. Analyses were stratified by the period before and after the Omicron variant became the predominant strain (>50% of sequenced viruses) at each study site. During the period of Delta predominance across study sites in the United States (August-mid-December 2021), VE against laboratory-confirmed COVID-19-associated ED and UC encounters was 86% 14-179 days after dose 2, 76% ≥180 days after dose 2, and 94% ≥14 days after dose 3. Estimates of VE for the same intervals after vaccination during Omicron variant predominance were 52%, 38%, and 82%, respectively. During the period of Delta variant predominance, VE against laboratory-confirmed COVID-19-associated hospitalizations was 90% 14-179 days after dose 2, 81% ≥180 days after dose 2, and 94% ≥14 days after dose 3. During Omicron variant predominance, VE estimates for the same intervals after vaccination were 81%, 57%, and 90%, respectively. The highest estimates of VE against COVID-19-associated ED and UC encounters or hospitalizations during both Delta- and Omicron-predominant periods were among adults who received a third dose of mRNA vaccine. All unvaccinated persons should get vaccinated as soon as possible. All adults who have received mRNA vaccines during their primary COVID-19 vaccination series should receive a third dose when eligible, and eligible persons should stay up to date with COVID-19 vaccinations.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunização Secundária , SARS-CoV-2/imunologia , Eficácia de Vacinas/estatística & dados numéricos , Vacinas de mRNA/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Assistência Ambulatorial/estatística & dados numéricos , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia
11.
MMWR Morb Mortal Wkly Rep ; 70(44): 1539-1544, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735425

RESUMO

Previous infection with SARS-CoV-2 (the virus that causes COVID-19) or COVID-19 vaccination can provide immunity and protection from subsequent SARS-CoV-2 infection and illness. CDC used data from the VISION Network* to examine hospitalizations in adults with COVID-19-like illness and compared the odds of receiving a positive SARS-CoV-2 test result, and thus having laboratory-confirmed COVID-19, between unvaccinated patients with a previous SARS-CoV-2 infection occurring 90-179 days before COVID-19-like illness hospitalization, and patients who were fully vaccinated with an mRNA COVID-19 vaccine 90-179 days before hospitalization with no previous documented SARS-CoV-2 infection. Hospitalized adults aged ≥18 years with COVID-19-like illness were included if they had received testing at least twice: once associated with a COVID-19-like illness hospitalization during January-September 2021 and at least once earlier (since February 1, 2020, and ≥14 days before that hospitalization). Among COVID-19-like illness hospitalizations in persons whose previous infection or vaccination occurred 90-179 days earlier, the odds of laboratory-confirmed COVID-19 (adjusted for sociodemographic and health characteristics) among unvaccinated, previously infected adults were higher than the odds among fully vaccinated recipients of an mRNA COVID-19 vaccine with no previous documented infection (adjusted odds ratio [aOR] = 5.49; 95% confidence interval [CI] = 2.75-10.99). These findings suggest that among hospitalized adults with COVID-19-like illness whose previous infection or vaccination occurred 90-179 days earlier, vaccine-induced immunity was more protective than infection-induced immunity against laboratory-confirmed COVID-19. All eligible persons should be vaccinated against COVID-19 as soon as possible, including unvaccinated persons previously infected with SARS-CoV-2.


Assuntos
COVID-19/diagnóstico , COVID-19/imunologia , SARS-CoV-2/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/terapia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Laboratórios , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Adulto Jovem , Vacinas de mRNA
12.
MMWR Morb Mortal Wkly Rep ; 70(44): 1553-1559, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735426

RESUMO

Immunocompromised persons, defined as those with suppressed humoral or cellular immunity resulting from health conditions or medications, account for approximately 3% of the U.S. adult population (1). Immunocompromised adults are at increased risk for severe COVID-19 outcomes (2) and might not acquire the same level of protection from COVID-19 mRNA vaccines as do immunocompetent adults (3,4). To evaluate vaccine effectiveness (VE) among immunocompromised adults, data from the VISION Network* on hospitalizations among persons aged ≥18 years with COVID-19-like illness from 187 hospitals in nine states during January 17-September 5, 2021 were analyzed. Using selected discharge diagnoses,† VE against COVID-19-associated hospitalization conferred by completing a 2-dose series of an mRNA COVID-19 vaccine ≥14 days before the index hospitalization date§ (i.e., being fully vaccinated) was evaluated using a test-negative design comparing 20,101 immunocompromised adults (10,564 [53%] of whom were fully vaccinated) and 69,116 immunocompetent adults (29,456 [43%] of whom were fully vaccinated). VE of 2 doses of mRNA COVID-19 vaccine against COVID-19-associated hospitalization was lower among immunocompromised patients (77%; 95% confidence interval [CI] = 74%-80%) than among immunocompetent patients (90%; 95% CI = 89%-91%). This difference persisted irrespective of mRNA vaccine product, age group, and timing of hospitalization relative to SARS-CoV-2 (the virus that causes COVID-19) B.1.617.2 (Delta) variant predominance in the state of hospitalization. VE varied across immunocompromising condition subgroups, ranging from 59% (organ or stem cell transplant recipients) to 81% (persons with a rheumatologic or inflammatory disorder). Immunocompromised persons benefit from mRNA COVID-19 vaccination but are less protected from severe COVID-19 outcomes than are immunocompetent persons, and VE varies among immunocompromised subgroups. Immunocompromised persons receiving mRNA COVID-19 vaccines should receive 3 doses and a booster, consistent with CDC recommendations (5), practice nonpharmaceutical interventions, and, if infected, be monitored closely and considered early for proven therapies that can prevent severe outcomes.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Hospitalização/estatística & dados numéricos , Hospedeiro Imunocomprometido/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/terapia , Vacinas contra COVID-19/imunologia , Feminino , Humanos , Esquemas de Imunização , Laboratórios , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Estados Unidos/epidemiologia , Vacinas Sintéticas/administração & dosagem , Adulto Jovem , Vacinas de mRNA
13.
Pediatrics ; 148(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34470815

RESUMO

BACKGROUND: Antiviral treatment is recommended for hospitalized patients with suspected and confirmed influenza, but evidence is limited among children. We evaluated the effect of antiviral treatment on hospital length of stay (LOS) among children hospitalized with influenza. METHODS: We included children <18 years hospitalized with laboratory-confirmed influenza in the US Influenza Hospitalization Surveillance Network. We collected data for 2 cohorts: 1 with underlying medical conditions not admitted to the ICU (n = 309, 2012-2013) and an ICU cohort (including children with and without underlying conditions; n = 299, 2010-2011 to 2012-2013). We used a Cox model with antiviral receipt as a time-dependent variable to estimate hazard of discharge and a Kaplan-Meier survival analysis to determine LOS. RESULTS: Compared with those not receiving antiviral agents, LOS was shorter for those treated ≤2 days after illness onset in both the medical conditions (adjusted hazard ratio: 1.37, P = .02) and ICU (adjusted hazard ratio: 1.46, P = .007) cohorts, corresponding to 37% and 46% increases in daily discharge probability, respectively. Treatment ≥3 days after illness onset had no significant effect in either cohort. In the medical conditions cohort, median LOS was 3 days for those not treated versus 2 days for those treated ≤2 days after symptom onset (P = .005). CONCLUSIONS: Early antiviral treatment was associated with significantly shorter hospitalizations in children with laboratory-confirmed influenza and high-risk medical conditions or children treated in the ICU. These results support Centers for Disease Control and Prevention recommendations for prompt empiric antiviral treatment in hospitalized patients with suspected or confirmed influenza.


Assuntos
Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Tempo de Internação , Adolescente , Criança , Pré-Escolar , Feminino , Hospitalização , Humanos , Lactente , Influenza Humana/complicações , Unidades de Terapia Intensiva Pediátrica , Estimativa de Kaplan-Meier , Masculino , Modelos de Riscos Proporcionais , Tempo para o Tratamento
14.
Vaccine ; 39(47): 6956-6967, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34509322

RESUMO

BACKGROUND: There are limited data on influenza vaccine effectiveness (IVE) in preventing laboratory-confirmed influenza illness among healthcare personnel (HCP). METHODS: HCP with direct patient contact working full-time in hospitals were followed during three influenza seasons in Israel (2016-2017 to 2018-2019) and Peru (2016 to 2018). Trivalent influenza vaccines were available at all sites, except during 2018-2019 when Israel used quadrivalent vaccines; vaccination was documented by electronic medical records, vaccine registries, and/or self-report (for vaccinations outside the hospital). Twice-weekly active surveillance identified acute respiratory symptoms or febrile illness (ARFI); self-collected respiratory specimens were tested by real-time reverse transcription polymerase chain reaction (PCR) assay. IVE was 100 × 1-hazard ratio (adjusted for sex, age, occupation, and hospital). RESULTS: Among 5,489 HCP who contributed 10,041 person-seasons, influenza vaccination coverage was 47% in Israel and 32% in Peru. Of 3,056 ARFIs in Israel and 3,538 in Peru, A or B influenza virus infections were identified in 205 (7%) in Israel and 87 (2.5%) in Peru. IVE against all viruses across seasons was 1% (95% confidence interval [CI] = -30%, 25%) in Israel and 12% (95% CI = -61%, 52%) in Peru. CONCLUSION: Estimates of IVE were null using person-time models during six study seasons in Israel and Peru.


Assuntos
Vacinas contra Influenza , Influenza Humana , Atenção à Saúde , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Israel/epidemiologia , Peru/epidemiologia , Estudos Prospectivos , Estações do Ano , Vacinação , Eficácia de Vacinas
15.
N Engl J Med ; 385(15): 1355-1371, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496194

RESUMO

BACKGROUND: There are limited data on the effectiveness of the vaccines against symptomatic coronavirus disease 2019 (Covid-19) currently authorized in the United States with respect to hospitalization, admission to an intensive care unit (ICU), or ambulatory care in an emergency department or urgent care clinic. METHODS: We conducted a study involving adults (≥50 years of age) with Covid-19-like illness who underwent molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We assessed 41,552 admissions to 187 hospitals and 21,522 visits to 221 emergency departments or urgent care clinics during the period from January 1 through June 22, 2021, in multiple states. The patients' vaccination status was documented in electronic health records and immunization registries. We used a test-negative design to estimate vaccine effectiveness by comparing the odds of a positive test for SARS-CoV-2 infection among vaccinated patients with those among unvaccinated patients. Vaccine effectiveness was adjusted with weights based on propensity-for-vaccination scores and according to age, geographic region, calendar time (days from January 1, 2021, to the index date for each medical visit), and local virus circulation. RESULTS: The effectiveness of full messenger RNA (mRNA) vaccination (≥14 days after the second dose) was 89% (95% confidence interval [CI], 87 to 91) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization, 90% (95% CI, 86 to 93) against infection leading to an ICU admission, and 91% (95% CI, 89 to 93) against infection leading to an emergency department or urgent care clinic visit. The effectiveness of full vaccination with respect to a Covid-19-associated hospitalization or emergency department or urgent care clinic visit was similar with the BNT162b2 and mRNA-1273 vaccines and ranged from 81% to 95% among adults 85 years of age or older, persons with chronic medical conditions, and Black or Hispanic adults. The effectiveness of the Ad26.COV2.S vaccine was 68% (95% CI, 50 to 79) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization and 73% (95% CI, 59 to 82) against infection leading to an emergency department or urgent care clinic visit. CONCLUSIONS: Covid-19 vaccines in the United States were highly effective against SARS-CoV-2 infection requiring hospitalization, ICU admission, or an emergency department or urgent care clinic visit. This vaccine effectiveness extended to populations that are disproportionately affected by SARS-CoV-2 infection. (Funded by the Centers for Disease Control and Prevention.).


Assuntos
Assistência Ambulatorial/estatística & dados numéricos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Hospitalização/estatística & dados numéricos , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , Idoso , Idoso de 80 Anos ou mais , Vacina BNT162 , COVID-19/epidemiologia , Vacinas contra COVID-19/imunologia , Feminino , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Readmissão do Paciente/estatística & dados numéricos , Estados Unidos/epidemiologia
16.
Front Public Health ; 9: 667337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235130

RESUMO

Understanding tuberculosis (TB) transmission chains can help public health staff target their resources to prevent further transmission, but currently there are few tools to automate this process. We have developed the Logically Inferred Tuberculosis Transmission (LITT) algorithm to systematize the integration and analysis of whole-genome sequencing, clinical, and epidemiological data. Based on the work typically performed by hand during a cluster investigation, LITT identifies and ranks potential source cases for each case in a TB cluster. We evaluated LITT using a diverse dataset of 534 cases in 56 clusters (size range: 2-69 cases), which were investigated locally in three different U.S. jurisdictions. Investigators and LITT agreed on the most likely source case for 145 (80%) of 181 cases. By reviewing discrepancies, we found that many of the remaining differences resulted from errors in the dataset used for the LITT algorithm. In addition, we developed a graphical user interface, user's manual, and training resources to improve LITT accessibility for frontline staff. While LITT cannot replace thorough field investigation, the algorithm can help investigators systematically analyze and interpret complex data over the course of a TB cluster investigation. Code available at: https://github.com/CDCgov/TB_molecular_epidemiology/tree/1.0; https://zenodo.org/badge/latestdoi/166261171.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Algoritmos , Humanos , Epidemiologia Molecular , Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia , Sequenciamento Completo do Genoma
17.
Influenza Other Respir Viruses ; 14(4): 391-402, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32249553

RESUMO

BACKGROUND: The Estudio Vacuna de Influenza Peru (VIP) cohort aims to describe the frequency of influenza virus infection, identify predictors of vaccine acceptance, examine the effects of repeated influenza vaccination on immunogenicity, and evaluate influenza vaccine effectiveness among HCP. METHODS: The VIP cohort prospectively followed HCP in Lima, Peru, during the 2016-2018 influenza seasons; a fourth year is ongoing. Participants contribute blood samples before and after the influenza season and after influenza vaccination (for vaccinees). Weekly surveillance is conducted to identify acute respiratory or febrile illnesses (ARFI). When an ARFI is identified, participants self-collect nasal swabs that are tested for influenza viruses by real-time reverse transcriptase-polymerase chain reaction. Influenza vaccination status and 5-year vaccination history are ascertained. We analyzed recruitment and enrollment results for 2016-2018 and surveillance participation for 2016-2017. RESULTS: In the first 3 years of the cohort, VIP successfully contacted 92% of potential participants, enrolled 76% of eligible HCP, and retained >90% of participants across years. About half of participants are medical assistants (54%), and most provide "hands-on" medical care (76%). Sixty-nine percent and 52% of participants completed surveillance for >70% of weeks in years 1 and 2, respectively. Fewer weeks of completed surveillance was associated with older age (≥50 years), being a medical assistant, self-rated health of fair or poor, and not receiving the influenza vaccine during the current season (P-values < .05). CONCLUSIONS: The VIP cohort provides an opportunity to address knowledge gaps about influenza virus infection, vaccination uptake, effectiveness and immunogenicity among HCP.


Assuntos
Pessoal de Saúde/estatística & dados numéricos , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Potência de Vacina , Adolescente , Adulto , Atenção à Saúde , Monitoramento Epidemiológico , Feminino , Pessoal de Saúde/classificação , Humanos , Imunogenicidade da Vacina , Vacinas contra Influenza/administração & dosagem , Influenza Humana/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Peru/epidemiologia , Estudos Prospectivos , Estações do Ano , Vacinação , Adulto Jovem
18.
Am J Epidemiol ; 188(9): 1733-1741, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251797

RESUMO

The incidence of tuberculosis (TB) in the United States has stabilized, and additional interventions are needed to make progress toward TB elimination. However, the impact of such interventions depends on local demography and the heterogeneity of populations at risk. Using state-level individual-based TB transmission models calibrated to California, Florida, New York, and Texas, we modeled 2 TB interventions: 1) increased targeted testing and treatment (TTT) of high-risk populations, including people who are non-US-born, diabetic, human immunodeficiency virus (HIV)-positive, homeless, or incarcerated; and 2) enhanced contact investigation (ECI) for contacts of TB patients, including higher completion of preventive therapy. For each intervention, we projected reductions in active TB incidence over 10 years (2016-2026) and numbers needed to screen and treat in order to avert 1 case. We estimated that TTT delivered to half of the non-US-born adult population could lower TB incidence by 19.8%-26.7% over a 10-year period. TTT delivered to smaller populations with higher TB risk (e.g., HIV-positive persons, homeless persons) and ECI were generally more efficient but had less overall impact on incidence. TTT targeted to smaller, highest-risk populations and ECI can be highly efficient; however, major reductions in incidence will only be achieved by also targeting larger, moderate-risk populations. Ultimately, to eliminate TB in the United States, a combination of these approaches will be necessary.


Assuntos
Busca de Comunicante , Tuberculose/prevenção & controle , California/epidemiologia , Florida/epidemiologia , Humanos , Incidência , Modelos Teóricos , New York/epidemiologia , Fatores de Risco , Texas/epidemiologia , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Tuberculose/terapia , Estados Unidos/epidemiologia
19.
Am J Public Health ; 108(S4): S311-S314, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30383419

RESUMO

OBJECTIVES: To illustrate the magnitude of between-state heterogeneities in tuberculosis (TB) incidence among US populations at high risk for TB that may help guide state-specific strategies for TB elimination. METHODS: We used data from the National Tuberculosis Surveillance System and other public sources from 2011 to 2015 to calculate TB incidence in every US state among people who were non-US-born, had diabetes, or were HIV-positive, homeless, or incarcerated. We then estimated the proportion of TB cases that reflected the difference between each state's reported risk factor-specific TB incidence and the lowest incidence achieved among 4 states (California, Florida, New York, Texas). We reported these differences for the 4 states and also calculated and aggregated across all 50 states to quantify the total percentage of TB cases nationally that reflected between-state differences in risk factor-specific TB incidence. RESULTS: On average, 24% of recent TB incidence among high-risk US populations reflected heterogeneity at the state level. The populations that accounted for the greatest percentage of heterogeneity-reflective cases were non-US-born individuals (51%) and patients with diabetes (24%). CONCLUSIONS: State-level differences in TB incidence among key populations provide clues for targeting state-level interventions.


Assuntos
Tuberculose/epidemiologia , Humanos , Incidência , Vigilância em Saúde Pública , Estudos Retrospectivos , Fatores de Risco , Estados Unidos/epidemiologia
20.
Pediatrics ; 139(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28557757

RESUMO

BACKGROUND AND OBJECTIVES: Surveillance for laboratory-confirmed influenza-associated pediatric deaths since 2004 has shown that most deaths occur in unvaccinated children. We assessed whether influenza vaccination reduced the risk of influenza-associated death in children and adolescents. METHODS: We conducted a case-cohort analysis comparing vaccination uptake among laboratory-confirmed influenza-associated pediatric deaths with estimated vaccination coverage among pediatric cohorts in the United States. Case vaccination and high-risk status were determined by case investigation. Influenza vaccination coverage estimates were obtained from national survey data or a national insurance claims database. We estimated odds ratios from logistic regression comparing odds of vaccination among cases with odds of vaccination in comparison cohorts. We used Bayesian methods to compute 95% credible intervals (CIs) for vaccine effectiveness (VE), calculated as (1 - odds ratio) × 100. RESULTS: From July 2010 through June 2014, 358 laboratory-confirmed influenza-associated pediatric deaths were reported among children aged 6 months through 17 years. Vaccination status was determined for 291 deaths; 75 (26%) received vaccine before illness onset. Average vaccination coverage in survey cohorts was 48%. Overall VE against death was 65% (95% CI, 54% to 74%). Among 153 deaths in children with underlying high-risk medical conditions, 47 (31%) were vaccinated. VE among children with high-risk conditions was 51% (95% CI, 31% to 67%), compared with 65% (95% CI, 47% to 78%) among children without high-risk conditions. CONCLUSIONS: Influenza vaccination was associated with reduced risk of laboratory-confirmed influenza-associated pediatric death. Increasing influenza vaccination could prevent influenza-associated deaths among children and adolescents.


Assuntos
Vacinas contra Influenza , Influenza Humana/mortalidade , Influenza Humana/prevenção & controle , Vacinação em Massa/estatística & dados numéricos , Adolescente , Criança , Estudos de Coortes , Humanos , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...